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Abstract

Introduction

As light passes through a optical system the reflections and refractions will in general change the polarization state

of the light. If we assume that all of the materials in the thin film coatings and substrate are isotropic and
homogeneous then calculating the amount of "instrumental" polarization is a relatively straight forward task. In the

following sections we will present all of the steps required to perform a "polarization ray trace" calculation for a single

ray and monochromatic and hence polarized light. The thin film portion of the calculation is also shown. The reason

for explicitly showing the thin film equations is that there are sign conventions imposed on the boundary value

equations by the orientation and handedness of the various coordinate frames which are attached to the geometric rays.

The attenuation of light through a optical system, is relatively simple, and requires at the very least a lens (average)

reflectivity or transmissivity. Determining the polarization sensitivity of a optical system is still relatively straight

forward requiring at least a knowledge of the behavior of the "s" and "p" components at each interface for the chief
ray. Determining the thin film induced aberrations of a optical system are somewhat more demanding. Questions

about the arithmetic sign of the phase factors and how this relates to the overall "OPD" of a ray are ubiquitous. Many

rays are required to construct a wavefront. Thin film codes which modify the OPD's of rays are a requirement for

this last mentioned computation. This requires a consistent scheme of coordinate frames and sign conventions and

is probably the most demanding task of a polarization ray trace.

Only the electric field will used in the discussion. This is not a restriction as the Stokes parameters are functions of

the electric field. The following does not attempt to explain, but only to present all of the required concepts and
formulas.

Maxwell's Equations in a Conducting Medium

It is very convient simply to state that in an isotropic medium with

we have
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Maxwell's Equations in a Conducting Medium

In an isotropic medium with

= dielectric constant

= permeability and

a = conductivity
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Wave Equation

If the electric field is given by

g(f,C) = Ee
(5)



and the row vector by

with _ denoting complex conjugation and E ÷ Hermitian conjugation.

Local Ray Coordinate Frames

n

Figure 2: Local Coordinate Frames.

At each interface we have a incident ray _i, a reflected ray _ and

a transmitted ray _t and a surface normal _, which is oriented such

that the scalar product _'_i > 0.

each of these rays is given by

The local s and p directions for

n x._ i

Inx (11)

and with

and

(12)

where _i is perpendicular to the plane of incidence and tangent to
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or in a more compact notation simply by

, (is)

IE'1> = R21Ei>

where the subscript R 2 indicates the incident surface.

Boundary Conditions

Figure 4: Two interfaces.

At each interface, within a film stack, the general form of the

equations expressing continuity of the tangential components of the

E and H fields is similar to the equations at the first interface.

(16)
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Comparing equations (19 & 20) and (24 & 25)

interface we have equations of the form

we see that at each

With the following substitutions for the s-component

= E (28)

= --Ncose (29)

and for the p-component

= --NE (30)

= -ENCOSe (31)

Multi-Layer Stack Equations

Referring to Figure (5) we have the following equations (for either

the s or p components) at the first interface

+ _' : _ + £, (32)

(33)

At Succeeding (i,i+I) interfaces we have, with

2xNj
8ii = --_dicos@ j

(34)

we have
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Matrix form of the Equations

Equations (32-38) can be rewritten as

I i ii( I (39)

(40)

(41)

or with A and B representing 2 by 2 matrices and "ket" le> the

appropriate column vector we have equations (42)

A_ le_> : %1e2>
A2 le2> : .%1e3>

(42)

Asles> = Bx+4es+,>
A4e=> : le,.+l>

This is equivalent to

le_> : A_-1% le2>

le2> --- A_-'S_ le3>

lex) = A]'Bx+fle1+z>

le,.> : A,,7_%+4e_+_>

and

lel> : A-_ (B2A_-_) (%A3-_).....{S_.7_)le_+,>

(43)

(44)

The form of the inverse matrices is

/

_ 1 I
eiSn

All 2 lel -iSn

t

1 e xsn

-W_ )

(45)
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Matrix Form

We can express the reflected and transmitted fields after the m_
surface as

('°:I['°olr' "l
or

: [ °
And similarly to equ. (15) and (15.1) this can be written as

Polarization Ray Trace

From equations (15.1) and (55) we see that at each surface the

expression

_m> : s_Rm___ > (56)

connects the electric field before and after each surface. The

expression

_.i> : S.R.S._IR.__......%%S_%_o> (57)

shows how the incoming plane wave electric field is modified by the

intervening surfaces.

Enerq7 Flux

The magnitude of the energy flux, J= in a pencil of light, after

the m a surface is given by (to within a constant of

proportionality)

Jm = nmcos @I nm-lcos @I-I nlc°s@_ ( E.IE=> (58)
B noCOSe fnm_lcos O_ nm-2cos @_-2
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tan2@ - (z + z') (65)
z11 - z22

or

1 z + z"
8 = _tan -z (66)

Zll - Z22

and from this we see that the maximum and minimum occur at

8 and 0 + _/2.

Phase Effeots

The transmitted intensity is given by

[z11 z)_ 1 (67)J = (s* P') _z" z22

where s and p are complex field quantities. The Z matrix is

Hermitian and is the product of the two matrices in equ. (60) where

_ x1 = S_Rm ....S2R2SzR z
(68)

from equ. (57). Now

{Z11 z I : R_S_R2_S2 ....Rm_S_SmRm ....S2R2SIR I
Z = _Z* Z22

(69)

the t denoting transpose and the * denoting complex conjugation.

The general forms of the matrices are
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s = /s(_) e -i_: d_
o

(76)

el

p = /p(a_) e -i_'t da_
o

(77)

hence

sp*z •

_w

oo
(78)

and the time average is given by

T

0

s((o)p'(_/) e-i(e-egtdt d_d_/

oo o

(79)

The real part of the time integral is

Rel/e-i(w-_')tdt
o

T

i /cos(_-_l) t (___l) dt .
(___1) o

(80)

From this we see that only when

(_-_') < __
2 (81)

is the integral different from zero. For

l=l micron (82)

a band pass filter of AA ~ i0 nanometer we get
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